
O: Objects and classes
Gareth McCaughan and Paul Wright Revision 1.8, May 14, 2001

Credits

c© Gareth McCaughan and Paul Wright. All rights reserved.

This document is part of the LiveWires Python Course. You may modify and/or distribute this document as long as you
comply with the LiveWires Documentation Licence: you should have received a copy of the licence when you received this
document.

For the LATEX source of this sheet, and for more information on LiveWires and on this course, see the LiveWires web site at
http://www.livewires.org.uk/python/

Introduction

In these sheets, I’ve mostly used the word “object” to mean “any thing Python can work with”. So a number is an object; so
is a string, or a list, or a dictionary.

But there’s another meaning of the word “object”. You may have heard the words “object-oriented programming”. This is
a way of thinking about writing programs that’s particularly effective for large and complicated programs. Python lets you
do object-oriented programming, and as it happens its “objects” are useful even in smaller programs.

This sheet is all about that kind of object in Python. For the Beginners’ course, it’s very optional. For the Games course, it’s
essential to know how these objects work.

Objects and classes

In Python (and some other programming languages too) a “kind of object” is called aclass, and, as you’ve probably worked
out by now, a thing which belongs to one of those kinds is called anobject.

When you make a class, you can tell Python what the objects in that class can do. The class is like a mold for stamping out
objects which do particular things.

The things that an object in that class can do are calledmethods. Methods are like functions which live inside an object (if
you don’t know what a function is, now would be a good time to look at Sheet 2 or Sheet F).

Type the following into the Python window where you can see the>>> signs (don’t type the>>> or ... parts, they’re just
there to show you how Python will respond to what you type).

>>> class Printer:
... def print_something (self, what):
... print "This object says", what
... Just press Enter here

You’ve just made a class calledPrinter . Objects belonging to this class only know how to do one thing at the moment,
as we’ve made onemethodcalledprint_something . Let’s make an object which belongs to thePrinter class, like
this:

>>> printobj = Printer ()

http://www.livewires.org.uk/python/


O Objects and classes

That was easy. Nowprintobj is an object from thePrinter class. Things in thePrinter class know how to do
print_something . Try this:

>>> printobj.print_something ("Hello there")

The full stop is used to get at things which live inside a particular object, soprintobj.print_something uses the
print_something method inside theprintobj object. Theprintobj object has theprint_something method
because we made it from thePrinter class.

Try gettingprintobj to say some other things. Try making some more objects from thePrinter class with different
names, and get them to say things too.

Variables in methods

Let’s try something else:

>>> class BetterPrinter: define a class called BetterPrinter
... def set_print (self, what):
... self.thing_we_print = what
... def print_it (self):
... print self.thing_we_print
... Just press Enter here

We’ve made another class calledBetterPrinter . It can do a few interesting things.

Tell Python to make an object which belongs to theBetterPrinter class. Let’s call itbprinter , say. Hint: it works
the same way as the thing we typed to make an object belonging toPrinter . Ask a neighbour or a team member if you
get stuck.

bprinter belongs toBetterPrinter , so it knows how to doset_print , and alsoprint_it , as these are the two
methods we made forBetterPrinter objects. Try this:

>>> bprinter.set_print ("Hi there")

What do you think will happen when we tellbprinter to print_it ? Try it and see:

>>> bprinter.print_it ()

Try changing whatbprinter prints using theset_print method. You can tellbprinter to print_it more than
once without changing what you’ve told it to print.

Try making some other objects belonging to theBetterPrinter class. If you change what one object prints, does it
change what another one prints? Try it.

When Python runs a method, it setsself to the object which the method belongs to, so we can easily get at this object and
the methods and variables which live inside it. Anything else we put in brackets when we run the method gets put into the
variables we listed afterself when we defined the method. So when we say:

>>> bprinter.set_print ("Hi there")

set_print runs withself set to thebprinter object andwhat set to “Hi there”. (Take a look at where we defined
theBetterPrinter class above: you can see the names there).

Each object belonging to theBetterPrinter class stores what you tell it to print in a variable calledthing_we_print .

– Page 2 –



O Objects and classes

Because I wanted each object to have its own differentthing_we_print , I had tell the object to use its ownthing_we_print
when we use theset_print andprint_it methods. This is whatself.thing_we_print means: all the objects
we made from theBetterPrinter class have athing_we_print , so we have to say which one we want. When we
ranbprinter ’s set_print method,self was set tobprinter , so

self.thing_we_print = what This is a line from theset_print method.

means

bprinter.thing_we_print = "Hi there"

You can check this yourself, as Python doesn’t stop you having a look at each object’sthing_we_print directly. Try
this:

>>> print bprinter.thing_we_print

and you’ll see you’ve managed to get atbprinter ’s thing_we_print without using theprint_it method. Try
settingthing_we_print without using theset_it method, and then usingprint_it to confirm you really have
changed whatbprinter prints.

So, we can access and even change our objects’ variables directly rather than through theset_print andprint_it
methods. Often it’s a bad idea to do this from outside the class, though. Imagine you are writing a class for other program-
mers to use: you want them to be able to use your class even if you change how it works on the inside. The way you can
do this is to fix the method names, the parameters they take (those things you put in brackets when you call a function or
method are calledparameters, if you’d forgotten that), and what the method returns. These things, which the class presents
for other people to use, are often called aninterface(in ordinary English, an interface is just the place where two different
things join, so this makes some kind of sense).

If the other programmers know that these things will stay the same whatever changes on the inside of the class, you can then
do what you like inside the class to make it do what it’s supposed to do. You can even change the method if you think of a
better way to do something: as long as we keep theinterfacefixed, the other people using your class won’t have to change
the way their programs work.

But if people assume they can mess around with the insides of your class, if you change those insides, their programs won’t
work. Imagine we decide to change the name ofthing_we_print to thing because we don’t like typing all those “_”
characters. A program which usedthing_we_print instead of going viaset_print andprint_it would not work
once we’d done this. But a program which used those two methods (and didn’t try to usething_we_print directly)
would still work, as we’ve hidden the workings of the class inside those two methods. This sort of thing becomes important
when you’re writing reasonably big programs or collaborating with other people on a program.

Inheritance

Let’s try something else:

>>> class EvenBetterPrinter (BetterPrinter):
... def add_it (self, what):
... self.thing_we_print = self.thing_we_print + what
... Just press Enter here.

You’ve just made a new class calledEvenBetterPrinter . Tell Python to make an object from that class called
ebprinter . (It’s just like we’ve done before: ask if you get stuck).

Now, try this:

– Page 3 –



O Objects and classes

>>> ebprinter.set_print ("greetings earthlings")
>>> ebprinter.print_it ()

What happened? You should find that bothset_print andprint_it are methods whichebprinter has. But we
didn’t define them when we definedEvenBetterPrinter above, so what’s going on?

The answer is that when we created theEvenBetterPrinter class, we said this:

class EvenBetterPrinter (BetterPrinter):

That tells Python thatEvenBetterPrinter is a kind ofBetterPrinter , and can do everything that aBetter-
Printer can do. Soebprinter knows aboutset_print andprint_it , becauseBetterPrinter defines them.

But there’s more toEvenBetterPrinter than what was inBetterPrinter . Try this:

>>> ebprinter.add_it (", take me to your leader.")
>>> ebprinter.print_it ()

What happened? Have a look back to the definition of theadd_it method ofEvenBetterPrinter and see if you can
work out what it does. Ask if you get stuck.

Try making other objects from theEvenBetterPrinter class and playing with the three methods these objects know
about.

What aboutBetterPrinter ? Do objects in that class now know aboutadd_it ? Try making another object from
BetterPrinter and see whether it knows aboutadd_it .

What we have done looks a bit like this (using rectangles for classes and ovals for methods):

BetterPrinter

print_it EvenBetterPrinter set_print

add_it

EvenBetterPrinter is asubclassof BetterPrinter (on the picture above, it’s underneath it: think of a submarine
underneath the water, say). Or, alternatively,BetterPrinter is asuperclassof EvenBetterPrinter (I suppose you
could think of Superman, flying above it! Or maybe not).

We’ve seen that objects fromEvenBetterPrinter have the methods thatBetterPrinter has, as well as the extra
add_it method we gaveEvenBetterPrinter . The fancy name for this isinheritance, because theEvenBetter-
Printer class is like a child of theBetterPrinter class and inherits these methods from it.

Try making other subclasses ofBetterPrinter and making objects belonging to the classes you’ve made. What happens
if you make a class which inherits fromBetterPrinter but has its ownprint_it method which does something
different fromBetterPrinter ’s? (In fact, there’s a way to get atBetterPrinter ’s print_it even if you have
overriden it in your subclass, but we’ll not worry about that now).

– Page 4 –



O Objects and classes

What’s the point of all this? Well, as we said earlier, inheritance is a way to say that A is a kind of B. Maybe we’re writing
a computer game where all the objects on the screen have some things in common: they all have a speed and a position,
they respond to being hit by other objects, and so on. But they also have differences: the player’s ship can shoot bullets, for
example, but the asteroids the player is shooting at cannot shoot back.

What we can do is make a class for an “object on the screen” which handles these common things, to save us having to
write out the same methods over and over again. But all objects on the screen are not the same, so we can make subclasses
of our “object on the screen” class to handle the things that each sort of object does differently. The player, the bullets and
the asteroids are all kinds of “objects on the screen”, so they’re all subclasses of the “object on the screen” class.

Magic methods

There’s one more thing we need to know about how classes work in Python so that we can understand the worksheets which
use them (the Games worksheets, for example).

Let’s make another subclass of our old friendBetterPrinter :

>>> class YAPrinter (BetterPrinter):
... def __init__ (self, what):
... self.thing_we_print = what
... print "An object from YAPrinter is born."
... print "Yippee! I’m alive!"
... Just press Enter here.

Try this:

>>> yap = YAPrinter ("Bonjour")

What happened? This works because the method named__init__ is special in Python (“init” is short forinitialisation,
which is a fancy name for the things we do to set something up for the first time). If a class defines an__init__ method,
that method is run whenever a new object from that class is created. So when we madeyap an object from theYAPrinter
class, the__init__ method ran and printed out its message.

You probably noticed something else which was different from what we’ve seen before. When we createdyap , we put
something inside the brackets after the name of the class. When we do this, the__init__ method gets passed what we
type in the variables we listed afterself when we defined__init__ . So, inside__init__ , what was set to “Bonjour”.
Have a look at the definition of__init__ above. What does it do with thewhat variable? What will happen when you
useyap ’s print_it method? Talk about it to your neighbour, and when you think you know, try it and see.

__init__ is useful because it allows us to set up the object with the things it needs to know to work. For example, if we
were writing our space game, we might give the__init__ method the location on the screen where each object starts the
game.

There are other special methods in Python too, but you needn’t worry about defining them accidentally as their names always
begin with “__”. As long as you don’t begin any of your method names like that (unless you mean to) you’ll be OK.

Conclusion

What have we learned? You should now know:

• How to create a class and define methods for it.

• How to create an object from that class and use its methods.

• How to set variables which live inside objects.

• How to create a subclass from another class.

– Page 5 –



O Objects and classes

• How to use the__init__ method.

If you’re not sure about any of these things, go back to that section and play with creating objects and classes, and ask for
help if you need it. Once you’ve got the hang of it, you can go on to use classes and objects in your own programs.

– Page 6 –


	Credits
	Introduction
	Objects and classes
	Variables in methods
	Inheritance
	Magic methods
	Conclusion

